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Abstract

The paper is devoted to the application of the second-order perturbation second probabilistic moment method to the
stress-based finite element method (FEM). The approach is introduced for the linear elastic heterogeneous medium — up
to the second-order, variational equations of the complementary energy principle are presented together with an ad-
ditional stochastic finite element discretization based on Airy and Prandtl stress functions. The numerical examples
shown in this paper illustrate the probabilistic stress and strain tensors in the cantilever beam under shear loading and
torsioned square beam with randomly defined material and geometrical parameters. The results obtained in the tests
can be applied in probabilistic analyses of the boundary value problems having any closed form mathematical solutions
as well as in the stress-based stochastic FEM analysis of solids and structures. © 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Stress-based finite element methods; Stochastic second-order perturbation method; Airy function; Prandtl function; Monte-
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1. Introduction

The equilibrium problems of solids and structures with random coefficients or under random excitations
were studied very extensively by numerous authors in the context of probabilistic static (Elishakoff et al.,
1995; Ghanem and Spanos, 1991; Kleiber and Hien, 1992; Vanmarcke and Grigoriu, 1983; Grigoriu, 2000)
and dynamic response (Ghanem and Spanos, 1991; Kleiber and Hien, 1992; Liu et al., 1986; Schiieller and
Shinozuka, 1987) both in linear and nonlinear range, taking into account the formulation and verification
of various reliability criteria (Der Kiureghian and Jyh, 1988; Thoft-Christensen and Baker, 1982). It was
done by the use of different Monte-Carlo simulation (MCS) approaches, stochastic spectral techniques,
stochastic weighted residuals or, alternatively, stochastic perturbation techniques. Since the computational
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time savings in comparison with simulation methods (especially in the case of large scale engineering
systems discrete modeling) and, on the other hand, taking into account the capability of spatial discreti-
zation of random fields, the second-order perturbation second probabilistic moment (SOSM) method is
used with its numerical implementation called the stochastic finite element method (SFEM). The method
has been successfully applied in displacement-based finite element method (FEM) in elastostatic, elasto-
dynamic as well as inelastic problems for both homogeneous and heterogeneous media (Kaminski and
Hien, 1999; Kaminski and Kleiber, 2000; Kleiber and Hien, 1992; Liu et al., 1986). On the other hand, it is
known from the homogenization theory fundamental for composite materials modeling (Borkowski, 1977;
Wieckowski, 1999) that the displacement-based FEM makes it possible to compute the lower bounds for
the effective properties of heterogeneous media while the stress-based approach enables to calculate the
corresponding upper values — since that both of them should be implemented. Further, considering the fact,
that most of reliability criteria are based on the stress tensor probabilistic moments and taking into account
very complicated form of this tensor moments in displacement-based FEM (Kleiber and Hien, 1992; Liu
et al., 1986; Zienkiewicz and Taylor, 1991), its stress-based (Azene, 1979; Desai, 1979; Rybicki and Schmit,
1970; Watwood and Hartz, 1968; Wieckowski, 1999) stochastic version is now proposed. The mathematical
model, computational discretization and solution of the boundary value problems for the engineering
structures with random material and geometrical parameters by using specially utilized stress-based FEM
are discussed below.

Due to the traditional general perturbation (Nayfeh, 1973) and the SOSM methodology (Kleiber and
Hien, 1992; Liu et al., 1986), up to the second-order variational equations are introduced corresponding to
the zeroth-, first- and second-order stress solution are written out and, starting from these equations, the
expected values and cross-covariances of all the state functions are derived; all of these relations are ob-
tained starting from the classical definitions of the first two probabilistic moments fundamental for the
probability theory (Feller, 1967; Vanmarcke, 1983). Next, the matrix description for the second-order
stress-based version of the stochastic FEM is introduced together with detailed equations for the case,
where some of the elastic and geometric characteristics are input random variables of the boundary value
problem. All the considerations are illustrated with two examples — the two-dimensional (2D) equilibrium
problem of the homogeneous cantilever under shear force with some parameters randomized and solved by
the global Airy stress functions approach and the computer patch test of the bar with rectangular cross-
section in torsion by using the stochastic constant triangle finite elements and Prandtl function. The results
of the second example are compared against the MCS that makes it possible to verify the general re-
strictions on the second-order perturbation technique.

2. Governing equations
2.1. Deterministic problem

Let us consider the set Q C R® bounded by the regular and sufficiently smooth boundary 0Q and
consider a heterogeneous linear elastic medium in Q built up with » homogeneous and coherent compo-
nents. Thus, the elasticity tensor is defined as follows:

Cor(x) = 7,(x)Clspy for i, jk,1 =12, a=1,...,n, (1)
where a is a number of homogeneous components of €,
Clt) = 0y0uta + (901 + dud) i, (2)

with 4, u being the Lame constants and
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|1, xeQ,
w0 ={5 Teaa G)

being the characteristic function. By the analogous way, the compliance tensor is introduced as a function
of engineering constants, i.e. Young’s moduli and Poisson’s coefficients for Q constituents as follows

y 1
‘75,'131 =z ((1 + Va)0ir0jr — va(1 + K\’a)éfj(skl), 4)
where
cyu(X) = 7,(X)cssly forijk,1=1,2, a=1,....n, (5)

and with x = 0,1 for the plane stress or the plane strain problem. Next, the boundary value problem is
defined on Q using the following equations:

Oijj = O, X € Q, (6)
& = CiyjuOr, X € L, (7)
&y = 5(wy+ ), xe€Q (8)
u, = 1),‘7 X € aQu, (9)
gijn; = E[, X € aQ,,, (10)
where
0Q,UdQ, =00, (11)
002, N oY, = 0. (12)

The variational formulation for the boundary value problem can be proposed (Borkowski, 1977; Tabarrok,
1984; Wieckowski, 1999) by using the statically admissible stresses space S, such that

S() = {S S [LZ(Q)}9:O'U = 0ji;0jj; = 0:x € Q7 gijn; = 0:x € aQo-}. (13)

Multiplying Eq. (8) by the stress variation do;; and integrating the result over the region Q we arrive at

/ (8,']‘ — % (u,“j + uj,f)) 8O-ij dQ =0. (14)
Q

Applying the Green formula to displacement field components u;, the complementary energy principle is
obtained for any d0;; € Sy in the form of

Q 29,
or, alternatively, by using the following functional:
Z(O') :% /C,‘jklaijo'k[dg—/ ﬁla,jn]d(@Q), (16)

which, after minimization, leads to the real stress field being a solution for equilibrium problem (6)—(12).
The equations posed above enables one to solve the boundary problem with random coefficients using the
SOSM method, which is shown in the next paragraph. It should be underlined that the method has quite a



3834 M. Kaminski | International Journal of Solids and Structures 38 (2001) 3831-3852

general character and makes it possible to randomize any differential or algebraic equations with respect to
up to the second-order perturbations of the problem parameters as well as up to the second-order prob-
abilistic moments of all the state variables.

Furthermore, quite analogous formulation may be proposed in the analysis of torsion of a linear, iso-
tropic and homogeneous medium formulated in terms of a warping function ¢ (Desai, 1979):

1 [P ¢
Sl (il il ) QU 1
o (50458 ) = 0w, (17)
where Q(x,y) represents an external load. The stress tensor components can be introduced as
0o 1)
= — = — — l
g13 ax2 ) 023 aX1 ) ( 8)
while the constitutive relation can be rewritten as
o _ oy
a—xz—G9<a—xl—)Q>7 (19)
o _ oy
6_x,_G0<6_x2+x1>’ (20)
in the case of an externally applied twisting moment Q(x,y) = —20 with ¥ being a warping function. Fi-
nally, the complementary energy necessary to finite element discretization can be expressed as
1 [/0p\> [09)\>
)= | —= || =— — | |dQ— de. 21
(@) /Q 26 <6x1 > " (6x2 3Qy 0 @D

As it is known, the torsion problem is so-called field problem and is equivalent to the heat conduction,
seepage and another related physical phenomena described by the same Laplace partial differential equa-
tion; solution of this particular problem makes it possible to describe, at the same time, all equivalent
problems in the context of the field analogies.

2.2. Second-order perturbation second probabilistic moment approach

Let us denote random variable of the problem as vector {»"(x;w)} and its probability density as g(5")
and g(b", b*) respectively (r,s = 1,2,..., R indexing various random variables). The expected values of this
variable is defined as follows (Feller, 1967; Vanmarcke, 1983):

E[p] = [ " e b, (22)

o0

while the covariance
+00 +00
Sy =cov(b",b°) = / / (" —ED)) (b — E[b])g(b",b*)db"db’. (23)

If the discrete representation of random vector b(x;w) is used (in terms of experimental data), the statistical
estimators (Bendat and Piersol, 1971) may be applied to approximate any order probabilistic moments of
the vector.

Next, all material and physical parameters of Q as well as the state functions (random fields resulting
from equilibrium problem solution) are extended in the variational formulation by the use of the following
stochastic Taylor series expansion:
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F(x;0) = F(x; 0) + zN:{ Z—TF(”) (x; w)ﬁAb"(w)}, (24)

where 0 is given small perturbation, Ab"" denotes the first order variation of Ab™ about its expected value
E[p"] and F"(x;w) represents the nth order partial derivatives with respect to the random variables
evaluated at their expected values. Considering great complexity of general nth order perturbation equa-
tions and corresponding computational implementation, the second-order approach under some restric-
tions of input random variables is usually proposed. Hence, the random function F(x;w) analyzed is
extended as follows:

F(x;0) = F(x;0) + 0F"(x; 0)Ab" + 10°F " (x; ) Ab"Ab". (25)
To obtain the SOSM model for the stress-based FEM, Eq. (15) is rewritten as
/Cijk10k160ijd9 = / ﬁiSGijnjd(aQ). (26)
Q 30

Introducing the second-order perturbation terms and equating the components of the same order, the
zeroth-, first- and second-order variational statements are obtained as

e zeroth-order (& terms, one equation):

/C?ﬂdO’ngU[de = / 12?66,/}’[/(1(69)7 (27)
Q a0,
e first-order (¢! terms, R equations):
/cgkla}Z,SJi,dQ:/ u; da;m;d(0€Q) —/c;’lﬁk,a,(zISG,-de, (28)
Q ) 0Q, ) Q
o second-order (&2 terms, one equation):
/Q Uk]ak,S”SG,de /ag ;"8 80,n;d(0Q) — /Q (Zc;;kla}j} +c;;j;10'21>S2580,-de. (29)

It should be noticed that the second-order equation is obtained above by multiplying the R-variate
probability density function pg(by,bs,...,bg) by the &2-terms and integrating over random vector b(x;)
domain. There holds, for instance

/_M U ] [ Ab () b, <xk>80un/d(asz>]p,e< (%)) db

o0

=g /m i [b° (e ); 1] [ / - Ab,(xk)Abs(xk)pR(b(xk))db] Sc,n,d(0Q)

:82/ i [b° (xx); x| Sy 80,m,; A (0Q). (30)
)

Further, it can be observed that the occurrence of the double sums (-)"S;* and (-)"(:)’S;* in the above
formulation makes it possible to obtain the single equation of the second-order (29), while without this
closure R(R + 1)/2 analogous equations must be solved since the symmetry of stiffness matrix. Let us note
that for nonsymmetric problems (Boundary Element Method formulation), R?> second-order equations
must be solved.

To determine the probabilistic solution for the equilibrium problem cons1dered Eq. (27) is solved for 6¢,,
next Eq. (28) — for the first-order terms of o, and, finally, Eq. (29) for ak, The probabilistic two moment
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characterization of all the state functions begins with the expected value of the stress tensor components.
Using the definition and introducing second-order expansion, gives

+00

Eloub(xe);xd] = / 61 b(xe); %t pe(b(xy)) db

—00

= [ {ehsgin] + ot lbtaindas, )

o0

+ %a}ff [b(x); X ] AD, (x5 ) Abg (x) }pR (b(x¢))db (31)

where ¢ = 1 is applied, and, further this becomes

+00

agl(xk)/_ pr(b(xk))der G’kr,(xk)/ Ab,(x;)pr(b(x;))db

o0 —00

+ %a[f () /_O:O Ab,(x;) Abs(xi ) pr(b(x;)) db. (32)

This result leads to the following conclusion:
Eloub(xe);xi]] = oy [b(xi); xi] + 5077 b(xe); %] S5 (33)

Next, the first-order cross-covariances for the stress tensor components are derived as follows:

o o) )] = 5 (55
= [ )] - ol o]}

7: {0'75 {b (x,(f)) ;xffz)] —E {G.,(; [b (x,@) ;x,@” }pR (b(x;)) db.
(34)

Therefore,
S (35x) = o (6 ) o (67) 5 (35)

To determine the first two probabilistic moments for the strains, the second-order perturbations are in-
serted in constitutive relation (7) as

&ij = CijkiOkl

= (b (xi); ] 4 € [D(ek); X Ab, (i) + 3¢ 1D (k)3 Xi ] Ab, (xi ) Aby (1))

x (o [b(x)xe] + ailb () 0] Ab, (i) + 307 [k ); 3k Ab () Aby (x)) (36)
for r,s,u,v =1,...,R. Since that, the second-order expected value for the strains can be derived as
Eley[b(xi);xi]] = e (xi)ap, (ve) + %{C}ﬁ;z () oy, (k) + 23 (k) 07 () + €y (k) a7 (xk)} Sy (37)

while the first-order accurate cross-covariance has the form
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cov (sij {b (x,(cl)) ! q e {b (x,iz)) : x,(f)} ) = SiH (x,(cl ) x,iz))

+ c?jmn (x,(cl)) C?/W (x,(cz)) or (x,(cl)) oo (x,({z) ) } Sy (38)

By the quite analogous way, the expected values and the cross-covariances of the displacement field
components can be derived, which completes the second-order second moment characterization of the
stress-based solution for the linear elastostatics equilibrium problem.

3. Stress-based finite element method
3.1. Deterministic approach

The following approximation of the stress tensor components in terms of Airy functions is applied in the
case of 2D problems to discretize variational statement (15):

62
2
s=| & |F=0F, (39)
aZ
T axdy

where function F(x, y) may be represented as follows:
F(x,y) = Z dpgX’ Y1 (40)
pgso

with the value of parameter o depending on the type of the stress-based finite element being used. Next, the
interpolation function N is introduced with the degrees of freedom vector a what makes it possible to apply
the following representation:

ale 62N2
, _67)/*2 —azyz A
_ _ N, "N _
s=0'Na= | &} —% ...|a=Ha. (41)
PN PN
x0y x0y

Defining the prescribed displacements vector #; for x € 002, and the matrix

n— [O 0 ] (42)

n, ny

with n, and n, denoting the components of the unity vector being normal to 02 and directed externally to €,
Eq. (15) may be rewritten as

da’ / H'adQ — 5a” / H'n"ad(0Q) =0, (43)
Q 0Q,

and hence
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/ H'adQ - F =0, (44)
Q
where
F= / H'n"ad(0Q). (45)
0Q,

Finally, analogously to displacement formulation of the FEM, it can be written that
Ka =F, (46)

where K is a system compliance matrix defined as
K= / H'cHdQ. (47)
Q

It should be mentioned that in general case, the stress tensor components may be rewritten as
O-ij - 8ipr8qu¢rs,pq (48)

with @,, denoting the Maxwell-Morera function components; further, computational aspects of the stress-
based FEM can be found in Wieckowski, (1999).

Taking into account the torsion problem discussed in Section 2.1 (cf. Egs. (17)—(21)) and the FEM
discretization by the use of triangular finite element (constant stress triangle finite element — CST (Desai,
1979)), the following description for warping function ¢ is obtained:

@ = Ni¢, + N2y + N33 = Na. (49)
Therefore, the complementary energy is obtained as
|
() = 3 / / a"H'dHadQ — / / 20HadQ. (50)
Q Q

Minimization of the functional X(¢) results in

//HTdeQaz//zeNTdQ, (51)
Q Q

what gives as a result Eq. (46) with

K:é//QBTBdQ (52)

for a homogeneous region characterized by Kirchhoff modulus G and external load vector given in terms of
twisting angle 20 as

F:29//QNTdQ. (53)

In the case of heterogeneous medium, the integration in Eq. (52) should be carried out over all components
fora=1,...,n

3.2. Stochastic stress-based finite elements
To introduce the matrix equations for the second-order and second moment stochastic analysis, let us

consider a space discretization of Q by a typical finite element mesh. First, the input vector of random
variables b,(x) is discretized in terms of some points values using the following spatial representation:
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b.(x)=¢,,(X)b,, r=1,...,R, a=1,...,N, (54)

where o is the shape function for ath node, N is the total number of nodal points in the mesh, while b,, is the
matrix of random parameters nodal values. Then, the expected values and cross-covariances are interpo-
lated as

E[b,(x)] = b)(x) = ,,(x)b}, (55)

COV(b,(X); b?(x)) = SZS = QD,,p(X)QDSJ(X)Sf(T, p,0 = L,...,N, (56)
where

Ab.(X) = ¢,,(x)Ab,, (57)

Ab, = b, — B, (58)

b) and S;” are the random value vector and the covariance matrix of this vector. It should be emphasized
that the node-type spatial discretization of random fields can be introduced as equivalent to the nodal
points of an original mesh. Alternatively, the same discretization may be carried out by using the additional
averaging method (random variable is defined as the spatial average of the random field over the single
finite element domain), the midpoint method (random variable is defined as the value of the random field at
the centroid of the element) and, at last, the series expansion method can be applied where the random field
is modeled as the series of shape functions with random coefficients and any field discretization (Kleiber and
Hien, 1992).

Next, all material properties and the state variables are expanded using the same shape functions — that is
illustrated on the example of the compliance tensor

ciu[br(X); X] = ciur[@,,(X)by; x| = @, (X)eiin(by),  p=1,... R (59)
Moreover, the Taylor series expansion for the nodal random variables is employed in the form of
onn(By) = chaa (B)) + eciias () b, + 32, (85) Ab, D, (60)
and, since both of these equations, it is obtained that
Connlbr(X)iX] = 0,() (e, () + e, () A1, + S, (B5) Ab,AD, ). (61)
Hence, up to the second-order perturbations of the compliance tensor are equal to
unlbr (X)X = 0, (x)cly, (89), (62)
r : _ p 0
cijklo( [b,.(X), X](/)rp(x) - (pa(x)cijklaz (bp) ’ (63)
S . o N 0
B (X0 X160, ()0, (%) = 0, () (). (64)

It should be emphasized that this type of discretization can be applied for homogeneous media, while

midpoint method is relevant for heterogeneous solids. Applying the above finite element approximations

into zeroth-, first- and second-order variational statements, the following hierarchical equilibrium equa-

tions are obtained:

o zeroth-order (¢° terms, one system of N linear simultaneous algebraic equations for ag(bg),p:
l,...,Ra=1,...,N):
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KO (88 )i (b)) = F2(85)) (65)
o first-order (&' terms, R systems of N linear simultaneous algebraic equations for a; (bg), p=1...,R;
o=1,...,N):

Ky (59)ag (85) = F (85) = K (80) b (85). (66)

e second-order (¢ terms, one system of N linear simultaneous algebraic equations for a? (bo) =

l,...,Rja=1,...,N):
0 (20 0\ _ [gpo (0 2 (10,0 (10 0 (10,0 (10 ] qpo
) ) - (1) - 25 )1 ) - 5 (D)) 2
with
a;f) (bg) =ay’ (bg)Sf”. (68)
Solving these equations for zeroth-, first- and second-order stress tensor field and applying the extension
as(by) = a3 (B) + eaf (b)) Ab, + 12ar” (1)) Ab,Ab,, (69)
the expected values and cross-covariances can be calculated as
Ela,] = a) + 1a?°S}’, (70)
S‘ﬁ—a"aﬁS’"r (71)

Using analogous methodology, the expected values of strain tensor components can be derived as follows:
E[e(x)] = ¢} (X)Hyo(X)as + 3 {C};i/(X)Hkla(X)ag + 2} (X) Hia (X)a; + cgkz(X)Hm(X)a’J“} Sy (72)
At the same time, the first-order strain tensor components cross-covariance has the following form:
€OV (i (X): 4 (X)) = [ (X)655X) e (X) 8 Hip (X)) (X)€55(X) Homs () (X) ]
+ Cumn( )c};W(X)HMM(X)aiHWﬁ( )a[f + ctjmn( )cgﬁ(x)flmm(X)aZHW/;(X)a};} SI};S
(73)

Finally, let us consider for illustration, the case where Poisson’s coefficient is introduced as the input
random variable of the problem. Then, the first- and second-order derivatives of the compliance tensor with
respect to this variable can be calculated using Eq. (5) as

(a)
Gci/.k, _ 1

o, E,

(5ik51'1 -1+ 2K"a)5ij(3k1), (74)

azcl('[‘lk)l 2K
a\)é == EH 5[]'5/{/' (75)

For the Young moduli of the component materials of Q treated as random variables, there holds

acﬁj‘.‘;, 1
0L, E2 ((

1 + Va)ézké/l ( =+ KVa)él/ék]) (76)

and, for the second-order partial derivatives with respect to this parameter
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2 2
@El'jz = E_'3 ((1 =+ va)éikéjl — Va(l + Kva)éijék,). (77)

Then, the canonical system of the stress-based SFEM equations for both of these parameters randomized
can be rewritten as

Kty = £, (78)

Kiyaj = Ky, (79

Kyai? = = (Kjjpa + 2K 5ya; ooV (b, b,) (80)
af™p “p=p ap™p s

since the fact that the external load vector is not a function of the input random variables vector intro-
duced. Starting from the equations posed above, the computational implementation of the stress-based
stochastic FEM based on the Hsieh—Clough-Tocher triangular or the Bogner—-Fox—Schmit rectangular
finite elements can be done. Further, considerations on the extension of the method presented on stochastic
nonlinear statics or dynamics may be carried out starting from corresponding models for displacement-
based SFEM models (Watwood and Hartz, 1968; Wieckowski, 1999).

4. Numerical illustration
4.1. Cantilever beam example by the second-order Airy functions

The general capabilities of the probabilistic second-order analysis are illustrated on the example of the
homogeneous steel cantilever beam with unit thickness loaded by the shear force P (cf. Fig. 1). The example
illustrates very well the usage of the second-order stochastic Airy functions to the stress analysis of plane
elastostatics problems where the closed solution is available. Starting from the classical Airy functions
theory (Timoshenko and Goodier, 1951), the stress and strain tensor components can be obtained as

3p 3P (0

0= =5 3, g, =0, T"J’_Z(1§>’ (81)
3P 3vP 3A+wP 5

BT gAY BT s T T T TS (C R ) (82)

Using approximations (33)—(35) for the stress tensor components as well as Egs. (37) and (38) for the strain
tensor, the expected values and cross-covariances for these state functions can be calculated explicitly as it is
shown in the Appendix A; the analysis can be extended on cross-correlations and higher order probabilistic
moments as well. Let us consider the structure with the following parameters: ¢ = 0.10 m, L = 0.50 m,

L

A
A\ 4

Fig. 1. Steel cantilever beam tested.
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P =10kN, E =209 GPa and v = 0.3. All these parameters except the length, L, are randomized separately
to verify the influence of each parameter; standard deviations for all of these variables are taken as 10% of
the corresponding expected values. Since the fact that expected values of stresses are quite closed to the
relevant deterministic functions, variances are presented below by only. Figs. 2 and 3 contain second-order
probabilistic moments of the variable o, obtained, thanks to second-order perturbation method imple-
mented in MAPLE package Char et al., (1992) to compare variability of this component with respect to
different input random parameters: external force and the height of the beam (horizontal axes of these
graphs correspond to spatial coordinates x and y); all the computations are done by the use of symbolic
differentiation tool built up in the program.

How it can be expected, the variance computed is equal to 0 for Young’s modulus and Poisson’s ratio
since the fact that first part of Eq. (81) does not contain these variables. In the case of external force and
beam height randomized (cf. Figs. 2 and 3) resulting extremal coefficients of variation are approximately
equal to input variation of input random parameters. The decisive points of the structure from the reli-
ability analysis point of view are the upper and lower edge of the clamped cross-section of a beam —
standard deviation reaches its maximal value in this region.

Moreover, the comparison of the stochastic second-order method computations with the results of MCS
technique are presented in Figs. 4-11. The expected values and standard deviations of strain tensor com-
ponents &, and ¢, are pairly compared for SFEM and MCS computations in the function of spatial co-
ordinates defining the beam plane. Young’s modulus of the structure is taken as an input random variable
while the total number of random trials in the MCS is assumed as equal to 10°. For the clarity of the
graphs, the coordinate x is scaled by 10! in Figs. 4-7 and by 10%, in Figs. 8-11, the expected values and
standard deviations collected are scaled by the same multiplicator. All the results illustrate very good
agreement between the perturbation and simulation based analyses — the shapes of the corresponding
functions are exactly the same while particular values are quite similar (with respect to the precision

500000+
400000+
300000

200000

100000~

% ’ 0.4

05 o1

Fig. 2. Variance of o, for P = P(w).
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presented on all vertical axes). Further, analogously to the previous results, higher order probabilistic
moments are equal to 0 for the free edge and horizontal axis, while both moments analyzed have their
maxima for upper and lower edge of a tree cross-section.
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It should be mentioned that the main value of the method proposed is capable of numerical modeling of

randomness in structural geometry, which is much more complicated in the SFEM displacement-based
analysis (Kaminski and Hien, 1999; Kaminski and Kleiber, 2000; Kleiber and Hien, 1992; Liu et al., 1986).
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Considering the fact that the results of a perturbation approach depend strongly on the coefficient of
variation of input random variables, the additional computational studies should be carried out to compare
the values resulting from MCS and SFEM analyses in terms of increasing variation coefficients that is
outlined in the next computational experiment.

4.2. Torsion of a rectangular beam

The stochastic FEM implementation aspects are explained in details on the example of torsion of a
square beam shown below. The discretization by the use of CST finite elements of a cross-section quarter is
presented in Fig. 12. The Kirchhoff modulus is considered here as input random variable and is defined by
its expected value E[G] and variance var(G), while twisting angle is taken as 0 = 1. Solution of the SFEM
equations (78)—(80) is obtained in the form of zeroth-, first- and second-order stress function components as
follows:

o) =1,33334G"", % =2,66667G",
oy =—1,33334G2, ¢ = —2,66667G 7,

P9 =2,66667G73, %% =5,33332G73.
Therefore, the expected values and variances are equal to

E[ps) = 1,33334(E"'[G] + E°[G]var(G)), var(ps) = 1,77778var(G)E*[G],

Elp,] =2,66667(E"'[G] + E*[G]var(G)), var(e,) =7, 1111var(G)E*[G].
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The corresponding probabilistic moments of the stresses in finite elements are equal to
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Finally, the cross-sectional twisting moment M and its probabilistic moments are obtained as
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Fig. 13. Convergence studies on the solution coefficients of variation.

M = / / @dxdy, E[M] = 7,1111(E""[G] + 0.5E°[G]var(G)),var(M) = 50,5677E*|G]var(G).

To illustrate the accuracy of the second-order approach, the variances of ¢, and ¢s (denoted by y; and ys)
are compared with corresponding values computed by the use of MCS technique and corresponding
maximum-likelihood statistical estimators (Bendat and Piersol, 1971). The results for £[G] = 10.0 and 10°
being the total number of the MCS random samples are collected in Fig. 13 (denoted by y; and ys) as a
function of var(G) in the range corresponding to the coefficient of variation from the interval (0.0; 0.5).

Due to the results of previous computational experiments (Kaminski and Hien, 1999; Kaminski and
Kleiber, 2000; Kleiber and Hien, 1992; Liu et al., 1986), the coefficients of variation obtained for the MCS
are generally greater than those calculated in the stochastic second-order perturbation analysis. These
differences are negligible for «(G) < 0.2; however, for coefficients tending to 0.5 are even in the range of 25%
(for ¢ = 1). It is considered that the method proposed may be used in further computations with the re-
striction on the coefficient of input random variables.

5. Concluding remarks

(1) The results obtained show, in the context of stress tensor probabilistic moments (especially vari-
ances), that the stress-based stochastic FEM formulated above makes it possible to relatively simply cal-
culate all of these moments that is complicated in the case of displacement based, traditional formulation of
the SFEM. Further, comparing various computational tests for both of these methods, it is visible that
using the displacement-based SFEM, it is possible to randomize material properties of the structure con-
sidered, while the geometrical randomness can be relatively easy implemented in stress-based SFEM ver-
sion using additional Airy functions. In further computational studies, the stochastic structural sensitivity
analysis should be carried out with respect to the expected values and variances of various structural pa-
rameters. It can be done by the use of the adjoint variable method or the direct differentiation method
approximations (Kleiber et al., 1997) formulated in the context of the complementary energy principle
(Azene, 1979; Tabarrok, 1984) in the conjunction with stochastic perturbation approach.

(2) Starting from the second-order probabilistic equations for the stress-based stochastic FEM and,
using the classical Hsieh—Clough—Tocher triangular or the Bogner—-Fox—Schmit rectangular finite elements
(Watwood and Hartz, 1968; Wieckowski, 1999), the corresponding general computer program can be
implemented. Since the fact that the SOSM extension of deterministic FEM does not need any intervention
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within the finite elements subroutines, various existing stress-based computer routines (Wieckowski, 1999)
can be used to the proposed stochastic second-order implementation. On the other hand, by the analogy to
the considerations presented in this paper, the SOSM approach to the torsion or related field problems can
be introduced by using the Prandtl function proposed above or so-called flux method (Fraejis de Veubeke
and Hogge, 1972). Both SOSM formulations may be useful in stochastic second-order homogenization
analysis of composite materials (Kaminski, 2000; Kaminski and Kleiber, 2000).

(3). Taking into account the analysis presented in this paper, it can be observed that displacement-based
FEM can be recommended for computations of the displacement field probabilistic moments, while the
expected values and cross-covariances of stresses are more efficiently computed using the approach pro-
posed above, which can be useful in reliability analysis. Analogously to the displacement-based FEM, the
maximum value of any input coefficient of variation should not be larger than 0.2 (Kleiber and Hien, 1992;
Liu et al., 1986). On the other hand, significant time savings are obtained in comparison to the MCS and
spatial discretization of random fields contrary to the stochastic spectral techniques (Ghanem and Spanos,
1991).
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Appendix A

The second-order perturbation method is used to derive the stress and strain tensor components in the
bar. Starting from Egs. (81 and 82) and relations for expected values and variances of strain and stress
tensor components (cf. Eqs. (31)-(34) and (36)—(38)), we obtain for ¢ = ¢(w)

e the expected values:

Elo,] = —% E3P[c] xy — E5I[j:] xyvar(c), (A.1)
3P 3 1 3P 9py?
E[‘ny} Z—m(l—m) +§<—T3[C}+E5—[c])Var(C), (AZ)
Ele,] = — ZETEI:[c} xy — E9;x[);] var(c), (A.3)
3vP 9vPxy
Ele)] = TR + B var(c), (A4)
314+vP, , o 1/=3(1+v)P 18(1+v)P?
[7o] = _§E+3[c)] (=) +5 ( éE;Ec]) + (E;rs [c)]Py )Var(c), (A.5)
e the variances:
var(o,) = - LY ko), (A.6)

4 B8]
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var(t,,) = (%5[0} - %) var(c), (A7)

var(s,) = ( 22%01) var(c), (A.8)
var(e,) = (%) var(c), (A.9)
var(,,) = (322;{2;9 - 9(;E+E:[)§y ) var(c). (A.10)

By the analogous way, the cross-covariances between any of these components can be derived as well as the
expected values and variances of the same tensors for material properties of the structure and external load
treated as the input random variables.
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